8x^2+6,28x^2-100=0

Simple and best practice solution for 8x^2+6,28x^2-100=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x^2+6,28x^2-100=0 equation:



8x^2+6.28x^2-100=0
We add all the numbers together, and all the variables
14.28x^2-100=0
a = 14.28; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·14.28·(-100)
Δ = 5712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5712}=\sqrt{16*357}=\sqrt{16}*\sqrt{357}=4\sqrt{357}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{357}}{2*14.28}=\frac{0-4\sqrt{357}}{28.56} =-\frac{4\sqrt{357}}{28.56} =-\frac{\sqrt{357}}{7.14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{357}}{2*14.28}=\frac{0+4\sqrt{357}}{28.56} =\frac{4\sqrt{357}}{28.56} =\frac{\sqrt{357}}{7.14} $

See similar equations:

| 14-3y=2(y+6) | | -6x-4(4x+7)=4(5x-10) | | 2x+4(x-4)=14 | | x/7+5=3 | | 3(t-3)=2t+8 | | z/9+4=2 | | w=51-2w | | 6x-3=4x=13 | | 3x=6=-15 | | -2x+19=-7x+39 | | 5x=7=-23 | | 2/(x+9)=4 | | 6x+24=3x+87 | | 3b+9=b+15 | | 5/(x-9)=3 | | t÷4-3=3 | | a÷5+4=15a= | | 5^x=8 | | 3x+5=11x-35 | | X^(1/2)=-x-6 | | 1a+12=6-3a | | W(w+10)=880 | | 5b-6=49 | | 10^x=0,01 | | 10^x=0,00001 | | 3(2x-2)=4x-2= | | 2(x+1)=5x-4= | | 8+5(p+9)=58 | | (2÷a)+(3÷2a)=7 | | 9=2k | | 1/3x+140=4/5x | | 32=4f |

Equations solver categories